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Abstract

In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell
is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause—effect relationship among the
variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage,
electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on
experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell
model, improving the generation time and avoiding permanent damage to the equipment.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Major efforts to reduce greenhouse gas emissions have
increased the demand for pollution-free energy sources, in the
last few years. Governmental and private-sector investments in
R&D, to support a program for clean energy generation includ-
ing hydrogen-based, are under way.

Fuel cells are electrochemical devices that generate electric-
ity, similar to batteries but which can be continuously fueled.
Most recent developments in proton exchange membrane fuel
cell (PEMFC) technology have made it the most promising for
stationary and mobile applications in the range of up to 200 kW.
They are characterized by high efficiency, high power density,
no aggression to the environment, no moving parts, and superior
reliability and durability.

Under certain pressure, hydrogen (H») is supplied into a
porous conductive electrode (the anode). The H; spreads through
the electrode until it reaches the catalytic layer of the anode,
where it reacts, separating protons and electrons. The H* pro-
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tons flow through the electrolyte (a solid membrane), and the
electrons pass through an external electrical circuit, producing
electrical energy. On the other side of the cell, the oxygen (O7)
spreads through the cathode and reaches its catalytic layer; on
this layer, the Oy, H* protons, and electrons produce liquid water
and residual heat as sub-products [1].

Several papers have been published considering the fuel cell
(FC) operation in normal conditions; but few of them addressed
the FC operation under fault conditions. Faults are events that
cannot be ignored in any real machine, and their consideration is
essential for improving the operability, flexibility, and autonomy
of automatic equipment.

In this paper, a fault diagnostic supervisor was designed to
execute on-line diagnosis, which indicates the cause of an incipi-
ent fault. The supervisor uses a Bayesian network arrangement to
establish the cause—effect relationship, and to calculate the prob-
ability of the most likely fault cause. An early alert of an incipient
fault allows making decisions to avoid degradation of other com-
ponents and catastrophic faults in the equipment. A FC model
able to reproduce the effects of faults on a fuel cell is gener-
ated. The supervisor and the FC model were integrated using the
MatLab/SimuLink® environment to confirm the characteristics
of this interaction.
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This paper is organized as follows. In Section 2, the mon-
itoring of the fault tolerant fuel cell (FTFC) is presented. In
Section 3, the FC model is introduced. In Section 4, four types
of faults in PEMFC are considered: faults in the air fan, faults in
the refrigeration system, growth of the fuel crossover, and faults
in hydrogen pressure. Section 5 presents a short background
of Bayesian networks. Section 6 introduces the fault diagnostic
supervisor for PEMFC.

2. The fault tolerant fuel cell (FTFC)

The design of a fault diagnostic supervisor requires the anal-
ysis of the operation of a FC in fault conditions; a FTFC was
constructed at the PSERC laboratory of the Colorado School
of Mines (CSM) [2]. The control system, the sensor system,
and the power system compose the FTFC. The control system
allows the adjustment of the speed of the air-reaction blower
and the refrigeration blower. The sensor system allows moni-
toring the voltage (Vs), electric current (/rc), temperature, and
relative humidity (HRqy). The power system is composed by
one Avistalabs cartridge containing four proton exchange mem-
branes (PEM). Also, the control of the FTFC can be executed by
microcontrollers (inside the FTFC) or based on PC (using the
LabView®). The same LabView® is applied for monitoring the
variables and the speed of the blowers. The air for reaction and
the air for refrigeration are separated on different routes, which
simplifies the monitoring process of some variables.

The FTFC allows the operation (and the monitoring) of the
system even when faults occur. Fig. 1 illustrates the monitor-
ing of the FTFC; this figure shows the FTFC, the load, and a
desktop computer with the LabView® software executing the
monitoring.

Fig. 1. Monitoring the FTFC.

Fig. 2 illustrates the evolution of several variables such
as output stack voltage (Vs), electric current (/gc), tempera-
ture, relative humidity (HRyy), and airflow volume, using the
software LabView®, when the FTFC operates in normal condi-
tions.

The FTFC was tested in different fault conditions. Fig. 3 illus-
trates the evolution of the output voltage (Vs), electric current
(Irc), and relative humidity (HRy) when the Hy pressure is
reduced at =10 min.

Fig. 4 illustrates the evolution of the output voltage (Vs),
electric current (Irc), and relative humidity (HRyy¢) when the
air-reaction volume is reduced at =30 min.

Unfortunately, the generation of each case requires about
2 h of supervised experiments; therefore, the construction of a
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Fig. 2. Evolution of the FTFC’s variables in normal conditions.
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Fig. 3. Evolution of FTFC’s variables by reduction of Hy pressure.

database with a considerable number of cases became highly
time-consuming. Also, fault effects such as membrane breaking
or dying of membrane imply permanent damage to the FTFC.
The effects of different types of faults can be simulated adapting
a FC model, avoiding damage to the equipment and improving
the generating time of fault records.
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Fig. 4. Evolution of FTFC’s variables by reduction of air-reaction volume.

3. The fuel cell model

Several mathematical models of PEMFC can be found in the
literature [1,3-5]. Basically, a model of PEMFC consists of an
electro-chemical and thermo-dynamical parts. Correa et al. [3]
introduce an electro-chemical model of a PEMFC; to validate
this model, the polarization curve obtained with this model is
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compared to the polarization curve of the manufacturing data
sheet. In Ref. [6], the thermo-dynamical part of the model and
the effects of different types of faults are included.

The FC model is based on the calculation of voltage, tem-
perature, and humidity, according to the equations considered
in Ref. [1,3]. The voltage Vgc of a single cell can be defined as
the result of the following expression [1]:

VEc = ENernst — Vact — Vohmic — Veon (1)

EnNernst 18 the thermodynamic potential of the cell representing
its reversible voltage:

ENemst = 1.229 — 0.85 x 1073(T — 298.15)
+4.31 < 107°T [In (Pyy) + 31In (Poy) 2)

where Py, and Po, (atm) are the hydrogen and oxygen pressures,
respectively and 7T (K) is the operating temperature.Vy is the
voltage drop due to the activation of the anode and the cathode:

Vact = —[&1 +&T +&3T In(co,) + &4T In (Irc)] 3)

where &; (i=1...4) are specific coefficients for every type of
FC, Irc (A) is electric current, and co, (atm) is the oxygen
concentration.

Vohmic 18 the ohmic voltage drop associated with the conduc-
tion of protons through the solid electrolyte, and of electrons
through the internal electronic resistance:

Vohmic = Irc(Rm + Rc) “®

where Rc (£2) is the contact resistance to electron flow and Ry
(£2) is the resistance to proton transfer through the membrane:

oMt
Ry = ——
M A 9
) 181.6[1 + 0.03(Igc/A) + 0.062(T/303)*(Irc/A)*]
M =

[ — 0.634 — 3(Irc/A)] exp[4.18(T — 303)/T)]
©)

where py (€2 cm) is the specific resistivity of membrane, £ (cm)
the thickness of membrane, A (cm2) the active area of the mem-
brane, and 1 is a coefficient for every type of membrane.

Veon represents the voltage drop resulting from the mass trans-
portation effects, which affects the concentration of the reacting

gases:
J
(6)
Jmax >

where B (V) is a constant depending on the type of FC, Jax the
maximum electric current density, and J is the electric current
density produced by the cell. In general, J = Joy +Jn Where Joy
is the real electrical output current density and J, is the fuel
crossover and internal loss current.

Considering a stack composed by several FCs, and as initial
approximation, the output stack voltage can be considered as:
Vstack =nrVEc, where nr is the number of cells composing the
stack. However, constructive characteristics of the stack such as
flow distribution and heat transfer should be taken [7-11].

Veon = —B1n (1 -

The variation of temperature in the FC is obtained with the
following differential equation [1]:
a7 AQ
dt MG,

(N

where M (kg) is the whole stack mass, Cs (J K~! kg_l) the aver-
age specific heat coefficient of the stack, and A Q is the rate of
heat variation (i.e. the difference between the rate of heat gen-
erated by the cell operation and the rate of heat removed). Four
types of heat can be removed: heat by the reaction air flowing
inside the stack (Qrem1), by the refrigeration system (Qrem2),
by water evaporation (Qrem3), and by heat exchanged with the
surroundings (Qrema)-

Water forms at the cathode, and because the membrane elec-
trolyte is very thin, water would diffuse from the cathode to
the anode during the operation of the cell. The water formation
would keep the electrolyte hydrated. This level of hydration is
measured through the relative humidity of the output air.

To calculate the relative humidity of the output air, the balance
of water is establishes: output = input + internal generation, or in
terms of the partial pressure of water: Py, = Pw;, + PWye,-

And, also HR oyt Psat_out = Pw,,,» then the HRy; s
HRyy = M ®)

Psat,out
where Py, is the partial pressure of the water in the inlet air,
Py, the partial pressure of the water generated by the chemical
reaction, and Pga¢ oy 18 the saturated vapor pressure in the output
air.

The Pgy is calculated from the following equation:

(b)T) +c
P70

If T7>273.15K, then a=—4.9283, b= —6763.28, and c =54.22;
The rate of water production (kgs™') is calculated from the
next equation [1].

Psat = Ta €X

o = 9.34 x 1078 Igc nr

For normal operation of the FC, proper temperature and
humidity should be maintained. If the HRgy is much less
than 100%, then the membrane dries out and the conductiv-
ity decreases. On the other hand, a HRyy greater than 100%
produces accumulation of liquid water on the electrodes, which
become flooded and block the pores, making gas diffusion diffi-
cult. The result of these two conditions is a fairly narrow range
of normal operating conditions. In abnormal conditions such
as flooding or drying, parameters (such as Rc and ) that are
normally constant (Table 1) start to vary. The parameters of the
FTFC model for normal conditions are presented in Table 1.

In general, these parameters are based on manufacturing data
and laboratory experiments, and their accuracy can affect the
simulation results. In Ref. [12], a multi-parametric sensitivity
analysis is performed to define the importance of the accuracy
of each parameter. The accuracy was analyzed in normal con-
ditions, considering variations around £10% of their normal
values. However, in fault conditions, those variations can be
stronger, as presented in Sections 4.1-4.4.
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Table 1

Parameters of the FTFC

Parameter Value

nr 4

A (cm?) 62.5

£ (um) 25

Po, (atm) 0.2095

Py, (atm) 1.47628

Rc () 0.003

B (V) 0.015

£ —0.948

& 0.00286+0.000 2In A + (4.3 x 10~%)In ¢y,
& 7.22 %1073

& —1.06153 x 10~*
v 23.0

Jo (Acm?) 0.022

Jmix (Acm?) 0.672

In Ref. [13], the water and thermal management in fuel
cell systems were analyzed considering extra humidification
at the cathode and anode. Forms of extra humidification can
include liquid water injection, direct membrane humidification,
recycling-humidification and many other methods; in Ref. [14],
the parameters that affect the liquid water flux through the mem-
brane and gas diffusion layer are analyzed. In Ref. [15], the
dynamic performance of PEMFC is tested under various oper-
ating conditions and load changes.

Fig. 5 illustrates the effects of variation in temperature
and HR,;; maintaining constant stoichiometric air relationships
(A =2,4, 8) applying the FC model. The stoichiometry (1) is the
relationship between inlet air divided by the air necessary for
the chemical reaction.

To avoid the membrane-drying problem, some researches
(e.g. [1,13]) have proposed extra humidification in the input
reaction air. However, the variation in the HR of the input air
produces a very small adjustment in the output HR; for exam-
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Fig. 6. Variation of output HR by adjusting the input HR.

ple, a variation of 10% in the input HR represents a variation of
approximately 2% in the output HR. Thus, in many cases, the
extra humidification of the input air is not enough to resolve the
drying problem. Fig. 6 illustrates the variation produced in the
HR output air by the adjustment in the HR input air.

4. Faults in fuel cells

In general, two categories of fault detection can be considered
[16]:

e Faults that can be detected by monitoring a specific variable.
For example, fuel leaks can be detected by installing a specific
gas sensor. In this case, a diagnosis is not necessary.

e Faults that cannot be detected directly by monitoring or faults
that need some type of diagnosis.

In practice, fault detection on commercial FC equipment is lim-
ited to detection of faults of the first type. This work focuses on
fault detection of the second type.

Four types of faults in PEMFCs are considered in this study:
fault in the air blower, fault in the refrigeration system, growth
of fuel crossover and internal loss current, and fault in hydrogen
pressure. The effects of these faults and the behavior of the FTFC
in fault operating conditions are included in the FC model [6].

4.1. Faults in the air-reaction blower

A reduction of the reaction air by a fault in the air blower can
produce two major effects: (i) accumulation of liquid water that
cannot be evaporated, thus affecting the resistivity of electrodes,
and (ii) reduction of O, concentration below that necessary for
a complete reaction with the H.

A common method for removing excess water inside the FC
is using the air flowing through it. The correct variation of the
stoichiometry A maintains the HR proximal to 100%. However,
when a fault in the air blower takes place, this becomes impos-
sible. This fault reduces the air-reaction flow, which reduces
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the water evaporation volume and permits the accumulation of
water. A great accumulation of water causes the flooding of elec-
trodes making gas diffusion difficult and affecting the resistance
of the electrodes and the performance of the FC. This effect is
simulated by the following equation [6]:

Waccum(k) ) 08 (9)

Rcxy =Re
@ (O)( const

where Rc(g) is the value of the variable at the initial state (normal
condition), Waccum(k) the volume of water accumulated at instant
k, and const; is a constant defining when the electrodes are led
to flooding.

The second effect of a fault in the air-reaction blower occurs
when A is below the practical and recommended value. In this
case, the O, concentration is reduced and the exit air completely
depleted of O. This reduction of O, concentration produces a
negative effect on the Enemst (Eq. (2)) and the increment on the
Vact (Eq. (3)). Fig. 7 illustrates the evolution of output voltage
(Vs), electric current (Igc), water volume accumulated, relative
humidity (HRy¢), and stoichiometry, when a partial fault in the
air blower occurs at =30 min.

4.2. Fault in the refrigeration system

The refrigeration system maintains temperature within oper-
ating conditions. When the temperature increases, the reaction
air has a drying effect and reduces the relative humidity (HR).
A low HR can produce a catastrophic effect on the polymer
electrolyte membrane, which not only totally relies upon high
water content, but is also very thin (and thus prone to rapid dry-
ing out). The drying of the membrane changes the membrane’s

L.A.M. Riascos et al. / Journal of Power Sources 175 (2008) 419429

resistance to proton flow (Ry). Ry is affected by the adjustment
of v, which varies according to the following equation [6]:

Vi = Yo
(const /HRoy) 12

(10)

where (o) is the value at the saturated condition (around 100%
of HR), HRyy(x) is the relative humidity of the outlet air at instant
k, and consty is a constant defining when the membrane is led
to drying.

Fig. 8 illustrates the evolution of output voltage (Vs), electric
current (Irc), temperature, relative humidity (HRqy), and stoi-
chiometry produced by a fault in the refrigeration system (i.e. a
reduction of Qrem2) at =30 min.

4.3. Increase of fuel crossover (J,,)

There is a small amount of wasted fuel that migrates through
the membrane. It is defined as fuel crossover—some hydrogen
will diffuse from the anode (through the electrolyte) to the cath-
ode, reacting directly with the oxygen and producing no current
for the FC.

In normal conditions, the flow of fuel and electrons through
the membrane (Jy,) is very small, typically representing only a
few mA cm?. A sudden increase in this parameter can be associ-
ated with rupture of the membrane. This variation of J;, produces
an increase in the concentration voltage drop (Vcon, Eq. (6)), and
therefore a reduction of Vgc. Fig. 9 illustrates the evolution of
output voltage (Vs), electric current (/rc), generated heat (Qgen),
real output power (Potyey1), and stoichiometry produced by an
increase in the fuel crossover (J,) from 0.022 to 0.2 A cm? at
t=30min.
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4.4. Fault in hydrogen pressure

In general, for mobile and stationary applications, hydrogen
is supplied by a high-pressure bottle, which is reduced by a
pressure regulator. In normal conditions, the hydrogen pressure
is assumed to be constant (generally between 1 and 3 atm). A
lower pressure negatively affects the performance of the FC.
The reduction of Hj pressure decreases the ENernst, increases the

Vact» and has a corresponding effect on Vgc. Fig. 10 illustrates
the evolution of output voltage (Vs), electric current (/gc), gen-
erated heat (Qgen), stoichometry, and relative humidity (HRoy)
produced by a reduction of the H, pressure.

In this section, the effects of four types of faults on the FC
operation were explained simply and directly. However, when a
fault occurs, an interconnected dependence among the variables
is established; in general, all the variables perform some kind of
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Fig. 9. Evolution of the FC model by membrane breaking.
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changes. That hinders the diagnosis of the fault cause. To qualify
and quantify the dependence among the variables, a Bayesian
network is constructed to conduct the fault diagnosis.

5. Bayesian networks for fault diagnosis

Bayesian networks have been extensively applied to fault
diagnosis, e.g. [17,18]; however, in the area of fuel cells, it is
a new field. In Ref. [17], a Bayesian network is implemented
for controlling an unsupervised fault tolerant system to gen-
erate oxygen from the CO, on Mars atmosphere. In Ref. [18],
Bayesian network is applied for fault diagnosis in a power deliv-
ery system. One advantage of Bayesian network is that it allows
the combination of expert knowledge of the process and prob-
abilistic theory for the construction of a diagnostic procedure;
nevertheless, both are recommended for the construction of a
“good” Bayesian network.

A Bayesian network is a structure that graphically models
relationships of probabilistic dependence within a group of vari-
ables. A Bayesian network B =(G, CP) is composed of the
network structure G and the conditional probabilities (CP). A
directed acyclic graph (DAG) represents the graphical structure
G, where each node of the graph is associated to a variable
Xi, and each node has a set of parents pa(X;). The relationship
among variables and parents represents the cause—effect rela-
tionship. The conditional probabilities, numerically quantifies
this cause—effect relationship [19].

The construction of a Bayesian network for fault diagnosis
begins with the collection of fault records and then probabilistic
methods are applied for the generation of the cause—effect struc-
ture. This process consists of the following steps, described in
detail in Ref. [6]:

(a) Construction of the database—the records are provided from
the FC model implemented on MatLab®. Field experiments
could also provide those records; however, two major prob-
lems should be considered: (i) large amounts of data are
necessary, where the generation of each case takes around
2h of supervised experiments and (ii) variables such as
QOgen, flooding, A, etc., impose additional challenges to be
monitored.

Implementation of search-and-score algorithms (e.g. the
Bayesian-score (K2) [20] and MCMC [21]) to find the
initial structure. The probabilistic approaches were imple-
mented using the Bayesian Network Toolbox developed for
MatLab® in Ref. [21].

Groups of variables are arranged in layers. Fault causes,
sensors, and pattern recognition are considered as layers.
Constraint-based conditions and knowledge are applied for
improving the structure.

Calculation of conditional probabilities on the final struc-
ture. In this research, the maximum posteriori likelihood
algorithm [22] was applied.

(b)

(c)
(d)
(e)

5.1. Generation of the database

Binary states of the variables are considered (0=normal,
1 =abnormal). The general procedure is to monitor a specific
variable; if after a fault takes place and the value of such vari-
able is off a certain tolerance band, then a flag should be turned
to “1”. Fig. 11 represents the range of tolerance and the evolution
of the Igc after a fault at t=30 min.

The next step is the construction of a vector containing the
value of all variables. This vector corresponds to a single case
in the database with values of all variables considered in a cer-
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tain period. A database of fault records with 10,000 cases was
constructed for the structure learning of a Bayesian network for
fault diagnosis in fuel cells. The database considers different
operational conditions with different fault causes simulated and
selected in a random sequence.

From the mathematical model, the evolution of variables that
can be difficult to monitor on a real machine (such as Qge, Or
M) can be observed. Records of all variables are essential for the
construction of the network structure avoiding hidden variables.
The calculation of the diagnosis is simpler if there are no hidden
variables [23].

The variables considered are the following:

Jn =fault by fuel crossover

aF =fault in the air blower

rF =fault in the refrigeration system
H2 =fault by low H; pressure

Fl = volume of air flow

Qgen = generated heat

A =stoichiometric air relationship
HR = output relative humidity
Dr=drying of membrane

Fd =flooding of electrodes

Ov =overload

V=voltagegck

Irc =electrical current of the FC

T =temperature

Pow = difference between real output power and required load
Py, =H; pressure

5.2. Search-and-score algorithms

The Bayesian-score (K2) and the Markov Chain Monte Carlo
(MCMC) algorithms were implemented in separated ways. The
K2 algorithm adds parents to a single node the addition of which

most increases the score of the resulting structure. When the
addition of no single parent increases the score, it stops adding
parents to a node and go to the next node. Before the algorithm
begins, the possible parents of every variable must be defined.
Therefore, the human-expert experience is important to define
that order.

The MCMC algorithm starts at a specific point in the space
of all possible DAGs. The search is performed through all the
nearest neighbors, and it moves to the neighbor that has the
highest score. If no neighbor has a higher score than the current
point, a local maximum was reached, and the algorithm stops.
A neighbor is the graph that can be generated from the current
graph by adding, deleting or reversing a single arc.

In practice, the search-and-score algorithms are not exact, and
used only as initial approximations, also since the Bayesian-
score and MCMC algorithms applied different tradeoffs for
searching the structure, those algorithms can produce different
results; therefore, knowledge about the conditional indepen-
dence among the variables should be applied for obtaining a
resulting graph.

5.3. Layers of the Bayesian network

For a better understanding of the relationship among vari-
ables, those are separated in several layers. In the final structure,
three layers are considered: fault causes, sensors, and pattern
recognition. Fault causes are the possible causes of the fault
such as fault in the air fan (aF), fault in the refrigeration system
(rF), growth of J,,, and low Hj pressure. Sensors are the variables
that can be easily monitored by sensors such as output voltage
(Vs), electric current (Irc), power, temperature, and Hy pressure
(Pu,). Pattern recognition is associated with variables difficult
to monitor in a real machine, but that play an important role in
a cause—effect structure and define a fault pattern. Those vari-
ables are: generated heat (Qgen), stoichiometric air relationship
(A), volume of air flow (F1), drying of membrane (Dr), flooding
of electrodes (Fd), overload (Ov) (i.e. the FC is working close
to the maximum load—in those cases, some variables perform a
different evolution), and relative humidity (HRy) (remember,
HRqy can only be measured between 0% and 100%).

5.4. Constrain-based conditions and knowledge

First, the fusion of the results applying several probabilistic
algorithms confirms the edges present in different structures,
second, the remaining edges are submitted to erasing based on
constrains and domain knowledge. This process is described in
detail in Ref. [6].

Some of the considered constraints are: (i) independent fault
cause assumption, i.e. only one fault takes place each time, and
one fault cause does not influence other fault cause; (ii) inde-
pendent sensors—edges among sensors can be erased because
their values are always observed.

Fig. 12 illustrates the resulting Bayesian network structure for
faultdiagnosis in PEMFC. The conditional probabilities (CP) are
obtained by the maximum posteriori likelihood algorithm [23]
on the network structure considered in Fig. 12. The Bayesian
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Fig. 12. Bayesian network structure for fault diagnosis in a PEMFC.

network B composed of the network structure G plus CP is ready
to be used for fault diagnosis in a PEMFC.

Network structures representing a diagnostic process play
a fundamental role for fault tolerant machines since they can
be associated with fault treatment processes (i.e. performing
the fault diagnosis to identify the fault cause and executing
the automatic recovery process). In Refs. [24-26] fault detec-
tion and fault treatment were integrated; the case studies were
automatic recovery processes in electric autonomous guided
vehicles, machining processes and factories.

6. The on-line fault diagnosis

An inference is the computation of a probability p(Xq|Xg),
where X is the variable of interest (e.g. the most probable fault
cause) and Xg is the variable or set of variables that have been
observed (i.e. the effects observed by sensors and transformed
into logic outputs).

There are many different algorithms for calculating the infer-
ence in Bayesian networks, which apply different tradeoffs
between speed, complexity, generality, and accuracy. The on-
line fault supervisor executes the fault diagnostic inference
by applying the variable elimination algorithm, which can be
applied to any type of Bayesian network structure [27].

The fault diagnostic fuel cell system is composed of several
subsystems: the fuel cell stack and controller, the supervisor,
and the peripheryc subsystems. The fuel cell stack contains
the electro-chemical and thermo-dynamical parts of the model
which calculate voltage, temperature, and humidity. The con-
troller calculates the volume of air-reaction and turns on/off
the refrigeration subsystem according to the performance of
the process. The supervisor verifies the correct operation of the
FC. If monitored variables perform abnormal changes, then the
supervisor executes the diagnostic process. The peripheryc sub-
systems provide the air for the chemical reaction, the hydrogen,
the refrigeration, and the load. The environmental conditions are
temperature 25 °C and relative humidity 40%.

Fig. 13 illustrates the execution of an on-line fault diagno-
sis. This test was performed forcing externally the output of
the refrigeration subsystem to zero (this simulates a fault condi-
tion). In this case, the supervisor detects abnormal variations in

—
H2 botﬂe|]

Air Reaction Fan > I:'

' Fud Cel Stadk Volt, Ifc

controler

Load P
= s

Refrigeration Sub System

Environment

Fig. 13. On-line fault diagnosis execution.

some variables during the operation of the FC. Then, the condi-
tional probabilities were calculated for all fault causes (J,, aF,
rF, and Hy) and shown at the supervisor’s display. According to
the supervisor, the most probable fault cause is rF (fault in the
refrigeration system) with 94% probability. The second proba-
ble cause is an increase of J, with 44% probability. And causes
aF and H» have 0% probability.

In all tests performed, the supervisor always indicated the
true cause as the most probable cause.

In general, the variation of electrical variables (such as
output voltage (Vs), and electric current (/gc)) is faster than
the variation of thermo-dynamical variables (e.g. temperature).
Therefore, the diagnosis of faults such as rF takes more time (in
this case, around 20 s); actually, this speed depends entirely on
the accuracy of the sensors. According to our experience, a worse
case scenario still allows fault detection in less than 1 min. But,
even 1 min is a good speed for detecting incipient faults before
a catastrophic effect takes place in the fuel cell system.

7. Conclusions

The design of a supervisor system to perform on-line fault
diagnosis in PEM fuel cells was implemented. The execution of
the diagnosis was based on a Bayesian network, which qualifies
and quantifies the cause—effect relationship within the variables.

Fault records of some variables were constructed including
variables difficult to monitor in a real machine. The record of all
relevant variables is essential for the construction of the network
structure avoiding hidden variables, especially in intermediary
layers.

After the construction of the Bayesian network, the inference
calculation is based on observations of variables easy to monitor
with sensors such as voltage, electric current, temperature, etc.
This allows the implementation of fault diagnostic processes in
a real machine.

The fault diagnostic tests have shown agreement between the
inference results and the original fault causes.
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In general, the fault diagnostic tests were fast enough to detect
incipient faults before a catastrophic effect took place in the fuel
cell system.

Topics such as the study of fault effects in fuel cells, the
construction of network structures for fault diagnosis in fuel
cells, and their association to fault treatment processes are still
under study, and are still open to research contributions.
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