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bstract

In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell
s introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause–effect relationship among the
ariables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage,

lectric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on
xperiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell
odel, improving the generation time and avoiding permanent damage to the equipment.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Major efforts to reduce greenhouse gas emissions have
ncreased the demand for pollution-free energy sources, in the
ast few years. Governmental and private-sector investments in
&D, to support a program for clean energy generation includ-

ng hydrogen-based, are under way.
Fuel cells are electrochemical devices that generate electric-

ty, similar to batteries but which can be continuously fueled.
ost recent developments in proton exchange membrane fuel

ell (PEMFC) technology have made it the most promising for
tationary and mobile applications in the range of up to 200 kW.
hey are characterized by high efficiency, high power density,
o aggression to the environment, no moving parts, and superior
eliability and durability.

Under certain pressure, hydrogen (H2) is supplied into a

orous conductive electrode (the anode). The H2 spreads through
he electrode until it reaches the catalytic layer of the anode,
here it reacts, separating protons and electrons. The H+ pro-

∗ Corresponding author. Tel.: +55 11 49963166; fax: +55 11 30915471.
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ons flow through the electrolyte (a solid membrane), and the
lectrons pass through an external electrical circuit, producing
lectrical energy. On the other side of the cell, the oxygen (O2)
preads through the cathode and reaches its catalytic layer; on
his layer, the O2, H+ protons, and electrons produce liquid water
nd residual heat as sub-products [1].

Several papers have been published considering the fuel cell
FC) operation in normal conditions; but few of them addressed
he FC operation under fault conditions. Faults are events that
annot be ignored in any real machine, and their consideration is
ssential for improving the operability, flexibility, and autonomy
f automatic equipment.

In this paper, a fault diagnostic supervisor was designed to
xecute on-line diagnosis, which indicates the cause of an incipi-
nt fault. The supervisor uses a Bayesian network arrangement to
stablish the cause–effect relationship, and to calculate the prob-
bility of the most likely fault cause. An early alert of an incipient
ault allows making decisions to avoid degradation of other com-
onents and catastrophic faults in the equipment. A FC model

ble to reproduce the effects of faults on a fuel cell is gener-
ted. The supervisor and the FC model were integrated using the
atLab/SimuLink® environment to confirm the characteristics

f this interaction.

mailto:luis.riascos@ufabc.edu.br
dx.doi.org/10.1016/j.jpowsour.2007.09.010
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This paper is organized as follows. In Section 2, the mon-
toring of the fault tolerant fuel cell (FTFC) is presented. In
ection 3, the FC model is introduced. In Section 4, four types
f faults in PEMFC are considered: faults in the air fan, faults in
he refrigeration system, growth of the fuel crossover, and faults
n hydrogen pressure. Section 5 presents a short background
f Bayesian networks. Section 6 introduces the fault diagnostic
upervisor for PEMFC.

. The fault tolerant fuel cell (FTFC)

The design of a fault diagnostic supervisor requires the anal-
sis of the operation of a FC in fault conditions; a FTFC was
onstructed at the PSERC laboratory of the Colorado School
f Mines (CSM) [2]. The control system, the sensor system,
nd the power system compose the FTFC. The control system
llows the adjustment of the speed of the air-reaction blower
nd the refrigeration blower. The sensor system allows moni-
oring the voltage (VS), electric current (IFC), temperature, and
elative humidity (HRout). The power system is composed by
ne AvistaLabs cartridge containing four proton exchange mem-
ranes (PEM). Also, the control of the FTFC can be executed by
icrocontrollers (inside the FTFC) or based on PC (using the
abView®). The same LabView® is applied for monitoring the
ariables and the speed of the blowers. The air for reaction and
he air for refrigeration are separated on different routes, which
implifies the monitoring process of some variables.

The FTFC allows the operation (and the monitoring) of the

ystem even when faults occur. Fig. 1 illustrates the monitor-
ng of the FTFC; this figure shows the FTFC, the load, and a
esktop computer with the LabView® software executing the
onitoring.

e
a

2

Fig. 2. Evolution of the FTFC’s va
Fig. 1. Monitoring the FTFC.

Fig. 2 illustrates the evolution of several variables such
s output stack voltage (VS), electric current (IFC), tempera-
ure, relative humidity (HRout), and airflow volume, using the
oftware LabView®, when the FTFC operates in normal condi-
ions.

The FTFC was tested in different fault conditions. Fig. 3 illus-
rates the evolution of the output voltage (VS), electric current
IFC), and relative humidity (HRout) when the H2 pressure is
educed at t = 10 min.

Fig. 4 illustrates the evolution of the output voltage (VS),

lectric current (IFC), and relative humidity (HRout) when the
ir-reaction volume is reduced at t = 30 min.

Unfortunately, the generation of each case requires about
h of supervised experiments; therefore, the construction of a

riables in normal conditions.
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Fig. 3. Evolution of FTFC’s variables by reduction of H2 pressure.

atabase with a considerable number of cases became highly
ime-consuming. Also, fault effects such as membrane breaking
r dying of membrane imply permanent damage to the FTFC.

he effects of different types of faults can be simulated adapting
FC model, avoiding damage to the equipment and improving

he generating time of fault records.

e
i
t

ig. 4. Evolution of FTFC’s variables by reduction of air-reaction volume.

. The fuel cell model

Several mathematical models of PEMFC can be found in the
iterature [1,3–5]. Basically, a model of PEMFC consists of an

lectro-chemical and thermo-dynamical parts. Correa et al. [3]
ntroduce an electro-chemical model of a PEMFC; to validate
his model, the polarization curve obtained with this model is
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ompared to the polarization curve of the manufacturing data
heet. In Ref. [6], the thermo-dynamical part of the model and
he effects of different types of faults are included.

The FC model is based on the calculation of voltage, tem-
erature, and humidity, according to the equations considered
n Ref. [1,3]. The voltage VFC of a single cell can be defined as
he result of the following expression [1]:

FC = ENernst − Vact − Vohmic − Vcon (1)

Nernst is the thermodynamic potential of the cell representing
ts reversible voltage:

Nernst = 1.229 − 0.85 × 10−3(T − 298.15)

+ 4.31 × 10−5T
[
ln (PH2 ) + 1

2 ln (PO2 )
]

(2)

herePH2 andPO2 (atm) are the hydrogen and oxygen pressures,
espectively and T (K) is the operating temperature.Vact is the
oltage drop due to the activation of the anode and the cathode:

act = −[ξ1 + ξ2T + ξ3T ln (cO2 ) + ξ4T ln (IFC)] (3)

here ξi (i = 1. . .4) are specific coefficients for every type of
C, IFC (A) is electric current, and cO2 (atm) is the oxygen
oncentration.

Vohmic is the ohmic voltage drop associated with the conduc-
ion of protons through the solid electrolyte, and of electrons
hrough the internal electronic resistance:

ohmic = IFC(RM + RC) (4)

here RC (�) is the contact resistance to electron flow and RM
�) is the resistance to proton transfer through the membrane:

RM = ρM�

A
,

ρM = 181.6[1 + 0.03(IFC/A) + 0.062(T/303)2(IFC/A)2.5]

[ψ − 0.634 − 3(IFC/A)] exp[4.18((T − 303)/T )]

(5)

here ρM (� cm) is the specific resistivity of membrane, � (cm)
he thickness of membrane, A (cm2) the active area of the mem-
rane, and ψ is a coefficient for every type of membrane.

Vcon represents the voltage drop resulting from the mass trans-
ortation effects, which affects the concentration of the reacting
ases:

con = −B ln

(
1 − J

Jmax

)
(6)

here B (V) is a constant depending on the type of FC, Jmax the
aximum electric current density, and J is the electric current

ensity produced by the cell. In general, J = Jout + Jn where Jout
s the real electrical output current density and Jn is the fuel
rossover and internal loss current.

Considering a stack composed by several FCs, and as initial

pproximation, the output stack voltage can be considered as:
Stack = nrVFC, where nr is the number of cells composing the
tack. However, constructive characteristics of the stack such as
ow distribution and heat transfer should be taken [7–11].

o
d
v
s
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The variation of temperature in the FC is obtained with the
ollowing differential equation [1]:

dT

dt
= �Q̇

MCs
(7)

here M (kg) is the whole stack mass, Cs (J K−1 kg−1) the aver-
ge specific heat coefficient of the stack, and �Q̇ is the rate of
eat variation (i.e. the difference between the rate of heat gen-
rated by the cell operation and the rate of heat removed). Four
ypes of heat can be removed: heat by the reaction air flowing
nside the stack (Qrem1), by the refrigeration system (Qrem2),
y water evaporation (Qrem3), and by heat exchanged with the
urroundings (Qrem4).

Water forms at the cathode, and because the membrane elec-
rolyte is very thin, water would diffuse from the cathode to
he anode during the operation of the cell. The water formation
ould keep the electrolyte hydrated. This level of hydration is
easured through the relative humidity of the output air.
To calculate the relative humidity of the output air, the balance

f water is establishes: output = input + internal generation, or in
erms of the partial pressure of water: Pwout = PWin + PWgen .

And, also HRoutPsat out =Pwout , then the HRout is

Rout = Pwin + Pwgen

Psat out
(8)

here Pwin is the partial pressure of the water in the inlet air,
wgen the partial pressure of the water generated by the chemical

eaction, and Psat out is the saturated vapor pressure in the output
ir.

The Psat is calculated from the following equation:

sat = T a exp
(b/T ) + c

10

f T > 273.15 K, then a = −4.9283, b = −6763.28, and c = 54.22;
The rate of water production (kg s−1) is calculated from the

ext equation [1].

˙ H2O = 9.34 × 10−8IFC nr

For normal operation of the FC, proper temperature and
umidity should be maintained. If the HRout is much less
han 100%, then the membrane dries out and the conductiv-
ty decreases. On the other hand, a HRout greater than 100%
roduces accumulation of liquid water on the electrodes, which
ecome flooded and block the pores, making gas diffusion diffi-
ult. The result of these two conditions is a fairly narrow range
f normal operating conditions. In abnormal conditions such
s flooding or drying, parameters (such as RC and ψ) that are
ormally constant (Table 1) start to vary. The parameters of the
TFC model for normal conditions are presented in Table 1.

In general, these parameters are based on manufacturing data
nd laboratory experiments, and their accuracy can affect the
imulation results. In Ref. [12], a multi-parametric sensitivity
nalysis is performed to define the importance of the accuracy

f each parameter. The accuracy was analyzed in normal con-
itions, considering variations around ±10% of their normal
alues. However, in fault conditions, those variations can be
tronger, as presented in Sections 4.1–4.4.
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Table 1
Parameters of the FTFC

Parameter Value

nr 4
A (cm2) 62.5
� (�m) 25
PO2 (atm) 0.2095
PH2 (atm) 1.47628
RC (�) 0.003
B (V) 0.015
ξ1 −0.948
ξ2 0.00286 + 0.000 2ln A + (4.3 × 10−5)ln cH2

ξ3 7.22 × 10−5

ξ4 −1.06153 × 10−4

ψ 23.0
J (A cm2) 0.022
J
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máx (A cm2) 0.672

In Ref. [13], the water and thermal management in fuel
ell systems were analyzed considering extra humidification
t the cathode and anode. Forms of extra humidification can
nclude liquid water injection, direct membrane humidification,
ecycling-humidification and many other methods; in Ref. [14],
he parameters that affect the liquid water flux through the mem-
rane and gas diffusion layer are analyzed. In Ref. [15], the
ynamic performance of PEMFC is tested under various oper-
ting conditions and load changes.

Fig. 5 illustrates the effects of variation in temperature
nd HRout maintaining constant stoichiometric air relationships
λ= 2, 4, 8) applying the FC model. The stoichiometry (λ) is the
elationship between inlet air divided by the air necessary for
he chemical reaction.

To avoid the membrane-drying problem, some researches

e.g. [1,13]) have proposed extra humidification in the input
eaction air. However, the variation in the HR of the input air
roduces a very small adjustment in the output HR; for exam-

Fig. 5. Temperature and relative humidity HRout for λ= constant.
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Fig. 6. Variation of output HR by adjusting the input HR.

le, a variation of 10% in the input HR represents a variation of
pproximately 2% in the output HR. Thus, in many cases, the
xtra humidification of the input air is not enough to resolve the
rying problem. Fig. 6 illustrates the variation produced in the
R output air by the adjustment in the HR input air.

. Faults in fuel cells

In general, two categories of fault detection can be considered
16]:

Faults that can be detected by monitoring a specific variable.
For example, fuel leaks can be detected by installing a specific
gas sensor. In this case, a diagnosis is not necessary.
Faults that cannot be detected directly by monitoring or faults
that need some type of diagnosis.

n practice, fault detection on commercial FC equipment is lim-
ted to detection of faults of the first type. This work focuses on
ault detection of the second type.

Four types of faults in PEMFCs are considered in this study:
ault in the air blower, fault in the refrigeration system, growth
f fuel crossover and internal loss current, and fault in hydrogen
ressure. The effects of these faults and the behavior of the FTFC
n fault operating conditions are included in the FC model [6].

.1. Faults in the air-reaction blower

A reduction of the reaction air by a fault in the air blower can
roduce two major effects: (i) accumulation of liquid water that
annot be evaporated, thus affecting the resistivity of electrodes,
nd (ii) reduction of O2 concentration below that necessary for
complete reaction with the H2.

A common method for removing excess water inside the FC

s using the air flowing through it. The correct variation of the
toichiometry λ maintains the HR proximal to 100%. However,
hen a fault in the air blower takes place, this becomes impos-

ible. This fault reduces the air-reaction flow, which reduces
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he water evaporation volume and permits the accumulation of
ater. A great accumulation of water causes the flooding of elec-

rodes making gas diffusion difficult and affecting the resistance
f the electrodes and the performance of the FC. This effect is
imulated by the following equation [6]:

c(k) = Rc(0)

(
waccum(k)

const1

)0.8

(9)

here Rc(0) is the value of the variable at the initial state (normal
ondition),waccum(k) the volume of water accumulated at instant
, and const1 is a constant defining when the electrodes are led
o flooding.

The second effect of a fault in the air-reaction blower occurs
hen λ is below the practical and recommended value. In this

ase, the O2 concentration is reduced and the exit air completely
epleted of O2. This reduction of O2 concentration produces a
egative effect on the ENernst (Eq. (2)) and the increment on the
act (Eq. (3)). Fig. 7 illustrates the evolution of output voltage

VS), electric current (IFC), water volume accumulated, relative
umidity (HRout), and stoichiometry, when a partial fault in the
ir blower occurs at t = 30 min.

.2. Fault in the refrigeration system

The refrigeration system maintains temperature within oper-
ting conditions. When the temperature increases, the reaction
ir has a drying effect and reduces the relative humidity (HR).
low HR can produce a catastrophic effect on the polymer
lectrolyte membrane, which not only totally relies upon high
ater content, but is also very thin (and thus prone to rapid dry-

ng out). The drying of the membrane changes the membrane’s

o
r
i
t

Fig. 7. Evolution of the FC mo
er Sources 175 (2008) 419–429

esistance to proton flow (RM). RM is affected by the adjustment
f ψ, which varies according to the following equation [6]:

(k) = ψ(0)

(const2/HRout)1.12 (10)

here ψ(0) is the value at the saturated condition (around 100%
f HR), HRout(k) is the relative humidity of the outlet air at instant
, and const2 is a constant defining when the membrane is led
o drying.

Fig. 8 illustrates the evolution of output voltage (VS), electric
urrent (IFC), temperature, relative humidity (HRout), and stoi-
hiometry produced by a fault in the refrigeration system (i.e. a
eduction of Qrem2) at t = 30 min.

.3. Increase of fuel crossover (Jn)

There is a small amount of wasted fuel that migrates through
he membrane. It is defined as fuel crossover—some hydrogen
ill diffuse from the anode (through the electrolyte) to the cath-
de, reacting directly with the oxygen and producing no current
or the FC.

In normal conditions, the flow of fuel and electrons through
he membrane (Jn) is very small, typically representing only a
ew mA cm2. A sudden increase in this parameter can be associ-
ted with rupture of the membrane. This variation of Jn produces
n increase in the concentration voltage drop (Vcon, Eq. (6)), and
herefore a reduction of VFC. Fig. 9 illustrates the evolution of

utput voltage (VS), electric current (IFC), generated heat (Qgen),
eal output power (Potreal), and stoichiometry produced by an
ncrease in the fuel crossover (Jn) from 0.022 to 0.2 A cm2 at
= 30 min.

del by air-reaction fault.
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.4. Fault in hydrogen pressure

In general, for mobile and stationary applications, hydrogen
s supplied by a high-pressure bottle, which is reduced by a
ressure regulator. In normal conditions, the hydrogen pressure

s assumed to be constant (generally between 1 and 3 atm). A
ower pressure negatively affects the performance of the FC.
he reduction of H2 pressure decreases the ENernst, increases the

o
f
i

Fig. 9. Evolution of the FC mod
by refrigeration system fault.

act, and has a corresponding effect on VFC. Fig. 10 illustrates
he evolution of output voltage (VS), electric current (IFC), gen-
rated heat (Qgen), stoichometry, and relative humidity (HRout)
roduced by a reduction of the H2 pressure.

In this section, the effects of four types of faults on the FC

peration were explained simply and directly. However, when a
ault occurs, an interconnected dependence among the variables
s established; in general, all the variables perform some kind of

el by membrane breaking.
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Fig. 10. Evolution of the F

hanges. That hinders the diagnosis of the fault cause. To qualify
nd quantify the dependence among the variables, a Bayesian
etwork is constructed to conduct the fault diagnosis.

. Bayesian networks for fault diagnosis

Bayesian networks have been extensively applied to fault
iagnosis, e.g. [17,18]; however, in the area of fuel cells, it is
new field. In Ref. [17], a Bayesian network is implemented

or controlling an unsupervised fault tolerant system to gen-
rate oxygen from the CO2 on Mars atmosphere. In Ref. [18],
ayesian network is applied for fault diagnosis in a power deliv-
ry system. One advantage of Bayesian network is that it allows
he combination of expert knowledge of the process and prob-
bilistic theory for the construction of a diagnostic procedure;
evertheless, both are recommended for the construction of a
good” Bayesian network.

A Bayesian network is a structure that graphically models
elationships of probabilistic dependence within a group of vari-
bles. A Bayesian network B = (G, CP) is composed of the
etwork structure G and the conditional probabilities (CP). A
irected acyclic graph (DAG) represents the graphical structure
, where each node of the graph is associated to a variable
i, and each node has a set of parents pa(Xi). The relationship
mong variables and parents represents the cause–effect rela-
ionship. The conditional probabilities, numerically quantifies
his cause–effect relationship [19].

The construction of a Bayesian network for fault diagnosis

egins with the collection of fault records and then probabilistic
ethods are applied for the generation of the cause–effect struc-

ure. This process consists of the following steps, described in
etail in Ref. [6]:

o

v
i

del by H2 pressure fault.

a) Construction of the database—the records are provided from
the FC model implemented on MatLab®. Field experiments
could also provide those records; however, two major prob-
lems should be considered: (i) large amounts of data are
necessary, where the generation of each case takes around
2 h of supervised experiments and (ii) variables such as
Qgen, flooding, λ, etc., impose additional challenges to be
monitored.

b) Implementation of search-and-score algorithms (e.g. the
Bayesian-score (K2) [20] and MCMC [21]) to find the
initial structure. The probabilistic approaches were imple-
mented using the Bayesian Network Toolbox developed for
MatLab® in Ref. [21].

c) Groups of variables are arranged in layers. Fault causes,
sensors, and pattern recognition are considered as layers.

d) Constraint-based conditions and knowledge are applied for
improving the structure.

e) Calculation of conditional probabilities on the final struc-
ture. In this research, the maximum posteriori likelihood
algorithm [22] was applied.

.1. Generation of the database

Binary states of the variables are considered (0 = normal,
= abnormal). The general procedure is to monitor a specific
ariable; if after a fault takes place and the value of such vari-
ble is off a certain tolerance band, then a flag should be turned
o “1”. Fig. 11 represents the range of tolerance and the evolution

f the IFC after a fault at t = 30 min.

The next step is the construction of a vector containing the
alue of all variables. This vector corresponds to a single case
n the database with values of all variables considered in a cer-
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Fig. 11. Evolution of IFC by a fault at t = 30 min.

ain period. A database of fault records with 10,000 cases was
onstructed for the structure learning of a Bayesian network for
ault diagnosis in fuel cells. The database considers different
perational conditions with different fault causes simulated and
elected in a random sequence.

From the mathematical model, the evolution of variables that
an be difficult to monitor on a real machine (such as Qgen or
) can be observed. Records of all variables are essential for the
onstruction of the network structure avoiding hidden variables.
he calculation of the diagnosis is simpler if there are no hidden
ariables [23].

The variables considered are the following:

Jn = fault by fuel crossover
aF = fault in the air blower
rF = fault in the refrigeration system
H2 = fault by low H2 pressure
Fl = volume of air flow
Qgen = generated heat
λ= stoichiometric air relationship
HR = output relative humidity
Dr = drying of membrane
Fd = flooding of electrodes
Ov = overload
V = voltagestack
IFC = electrical current of the FC
T = temperature
Pow = difference between real output power and required load
PH2 = H2 pressure

.2. Search-and-score algorithms
The Bayesian-score (K2) and the Markov Chain Monte Carlo
MCMC) algorithms were implemented in separated ways. The
2 algorithm adds parents to a single node the addition of which

f
o
o

er Sources 175 (2008) 419–429 427

ost increases the score of the resulting structure. When the
ddition of no single parent increases the score, it stops adding
arents to a node and go to the next node. Before the algorithm
egins, the possible parents of every variable must be defined.
herefore, the human-expert experience is important to define

hat order.
The MCMC algorithm starts at a specific point in the space

f all possible DAGs. The search is performed through all the
earest neighbors, and it moves to the neighbor that has the
ighest score. If no neighbor has a higher score than the current
oint, a local maximum was reached, and the algorithm stops.
neighbor is the graph that can be generated from the current

raph by adding, deleting or reversing a single arc.
In practice, the search-and-score algorithms are not exact, and

sed only as initial approximations, also since the Bayesian-
core and MCMC algorithms applied different tradeoffs for
earching the structure, those algorithms can produce different
esults; therefore, knowledge about the conditional indepen-
ence among the variables should be applied for obtaining a
esulting graph.

.3. Layers of the Bayesian network

For a better understanding of the relationship among vari-
bles, those are separated in several layers. In the final structure,
hree layers are considered: fault causes, sensors, and pattern
ecognition. Fault causes are the possible causes of the fault
uch as fault in the air fan (aF), fault in the refrigeration system
rF), growth of Jn, and low H2 pressure. Sensors are the variables
hat can be easily monitored by sensors such as output voltage
VS), electric current (IFC), power, temperature, and H2 pressure
PH2 ). Pattern recognition is associated with variables difficult
o monitor in a real machine, but that play an important role in
cause–effect structure and define a fault pattern. Those vari-

bles are: generated heat (Qgen), stoichiometric air relationship
λ), volume of air flow (Fl), drying of membrane (Dr), flooding
f electrodes (Fd), overload (Ov) (i.e. the FC is working close
o the maximum load—in those cases, some variables perform a
ifferent evolution), and relative humidity (HRout) (remember,
Rout can only be measured between 0% and 100%).

.4. Constrain-based conditions and knowledge

First, the fusion of the results applying several probabilistic
lgorithms confirms the edges present in different structures,
econd, the remaining edges are submitted to erasing based on
onstrains and domain knowledge. This process is described in
etail in Ref. [6].

Some of the considered constraints are: (i) independent fault
ause assumption, i.e. only one fault takes place each time, and
ne fault cause does not influence other fault cause; (ii) inde-
endent sensors—edges among sensors can be erased because
heir values are always observed.
Fig. 12 illustrates the resulting Bayesian network structure for
ault diagnosis in PEMFC. The conditional probabilities (CP) are
btained by the maximum posteriori likelihood algorithm [23]
n the network structure considered in Fig. 12. The Bayesian
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Fig. 12. Bayesian network structure for fault diagnosis in a PEMFC.

etwork B composed of the network structure G plus CP is ready
o be used for fault diagnosis in a PEMFC.

Network structures representing a diagnostic process play
fundamental role for fault tolerant machines since they can

e associated with fault treatment processes (i.e. performing
he fault diagnosis to identify the fault cause and executing
he automatic recovery process). In Refs. [24–26] fault detec-
ion and fault treatment were integrated; the case studies were
utomatic recovery processes in electric autonomous guided
ehicles, machining processes and factories.

. The on-line fault diagnosis

An inference is the computation of a probability p(Xq|XE),
here Xq is the variable of interest (e.g. the most probable fault

ause) and XE is the variable or set of variables that have been
bserved (i.e. the effects observed by sensors and transformed
nto logic outputs).

There are many different algorithms for calculating the infer-
nce in Bayesian networks, which apply different tradeoffs
etween speed, complexity, generality, and accuracy. The on-
ine fault supervisor executes the fault diagnostic inference
y applying the variable elimination algorithm, which can be
pplied to any type of Bayesian network structure [27].

The fault diagnostic fuel cell system is composed of several
ubsystems: the fuel cell stack and controller, the supervisor,
nd the peripheryc subsystems. The fuel cell stack contains
he electro-chemical and thermo-dynamical parts of the model
hich calculate voltage, temperature, and humidity. The con-

roller calculates the volume of air-reaction and turns on/off
he refrigeration subsystem according to the performance of
he process. The supervisor verifies the correct operation of the
C. If monitored variables perform abnormal changes, then the
upervisor executes the diagnostic process. The peripheryc sub-
ystems provide the air for the chemical reaction, the hydrogen,
he refrigeration, and the load. The environmental conditions are
emperature 25 ◦C and relative humidity 40%.
Fig. 13 illustrates the execution of an on-line fault diagno-
is. This test was performed forcing externally the output of
he refrigeration subsystem to zero (this simulates a fault condi-
ion). In this case, the supervisor detects abnormal variations in

T
a

i

Fig. 13. On-line fault diagnosis execution.

ome variables during the operation of the FC. Then, the condi-
ional probabilities were calculated for all fault causes (Jn, aF,
F, and H2) and shown at the supervisor’s display. According to
he supervisor, the most probable fault cause is rF (fault in the
efrigeration system) with 94% probability. The second proba-
le cause is an increase of Jn with 44% probability. And causes
F and H2 have 0% probability.

In all tests performed, the supervisor always indicated the
rue cause as the most probable cause.

In general, the variation of electrical variables (such as
utput voltage (VS), and electric current (IFC)) is faster than
he variation of thermo-dynamical variables (e.g. temperature).
herefore, the diagnosis of faults such as rF takes more time (in

his case, around 20 s); actually, this speed depends entirely on
he accuracy of the sensors. According to our experience, a worse
ase scenario still allows fault detection in less than 1 min. But,
ven 1 min is a good speed for detecting incipient faults before
catastrophic effect takes place in the fuel cell system.

. Conclusions

The design of a supervisor system to perform on-line fault
iagnosis in PEM fuel cells was implemented. The execution of
he diagnosis was based on a Bayesian network, which qualifies
nd quantifies the cause–effect relationship within the variables.

Fault records of some variables were constructed including
ariables difficult to monitor in a real machine. The record of all
elevant variables is essential for the construction of the network
tructure avoiding hidden variables, especially in intermediary
ayers.

After the construction of the Bayesian network, the inference
alculation is based on observations of variables easy to monitor
ith sensors such as voltage, electric current, temperature, etc.

his allows the implementation of fault diagnostic processes in
real machine.

The fault diagnostic tests have shown agreement between the
nference results and the original fault causes.
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In general, the fault diagnostic tests were fast enough to detect
ncipient faults before a catastrophic effect took place in the fuel
ell system.

Topics such as the study of fault effects in fuel cells, the
onstruction of network structures for fault diagnosis in fuel
ells, and their association to fault treatment processes are still
nder study, and are still open to research contributions.
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